effects of anti-human HB-EGF neutralizing polyclonal antibodies
Antiproliferative and apoptotic results of anti-human HB-EGF neutralizing polyclonalantibodies in vitro.
Heparin-binding epidermal development factor-like development issue (HB-EGF) is a member of the epidermal development issue household and has a wide range of physiological and pathophysiological capabilities. Additionally, HB-EGF performs a pivotal position in development of various tumors.
So, HB-EGF appears to be a goal molecule for the remedy of some most cancers sorts.To acquire HB-EGF neutralizing polyclonal antibodies and check their anti-proliferative properties in vitro.Lab rabbits and mice have been used for immunization with recombinant HB-EGF. The impact of generated polyclonal antibodies on viability and apoptosis of human epidermoid carcinoma derived A431 cell line was assessed utilizing MTT and Annexin V-propidium iodide assays.Rabbit polyclonal anti-HB-EGF serum may block binding of soluble HB-EGF to epidermal development issue receptor/human epidermal development issue receptor.
Additionally, anti-HB-EGF antibodies may bind to floor of A431 cells which categorical abnormally excessive ranges of membrane sure proHB-EGF and its receptor. It has been proven that immune serum with polyclonal antibodies towards HB-EGF was in a position to block the mitogenic activation of the cells with HB-EGF and trigger apoptotic cell demise.Inhibition of HB-EGF exercise with neutralizing polyclonal antibodies can successfully inhibit mitogenic activation and trigger apoptosis of most cancers cells with important epidermal development issue receptor overexpression.
The impact of polyclonal activators on rabbit B cell antibody manufacturing.
Stimulation with polyclonal activators is a software to extend antibody secretion in B cells. The purpose of the current examine was to pick the best frequent commercially obtainable polyclonal activators of rabbit B cells. Particularly, kind B oligodeoxynucleotides with unmethylated deoxycytidyl-deoxyguanosine dinucleotides (CpG-ODN), recombinant rabbit interleukin-2 (rrIL-2), lipopolysaccharide (LPS), pokeweed mitogen (PWM) and Resiquimod (R848) have been examined on B cells remoted from blood and spleen by fluorescence-activated cell sorting. Primarily based on the obtained information, stimulation with CpG-ODN induced the best antigen-specific antibody ranges detected by ELISA in supernatants when a single activator was used.
In distinction, LPS, PWM and R848 confirmed a weak or no stimulatory impact. Stimulation with a mixture of activators was simpler than CpG-ODN alone, which signifies a synergistic impact within the stimulation of antibody manufacturing.
i-dna
Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) ELISA Kit
Description: A polyclonal antibody against PIBF1. Recognizes PIBF1 from Human, Mouse, Rat. This antibody is Unconjugated. Tested in the following application: ELISA, WB
Description: A polyclonal antibody against PIBF1. Recognizes PIBF1 from Human. This antibody is Unconjugated. Tested in the following application: ELISA, WB, IHC;ELISA:1:1000-1:2000, WB:1:200-1:1000, IHC:1:25-1:100
Description: A polyclonal antibody against PIBF1. Recognizes PIBF1 from Human. This antibody is Unconjugated. Tested in the following application: ELISA, IHC;ELISA:1:2000-1:5000, IHC:1:50-1:200
Description: PIBF1 Antibody: PIBF1 is synthesized during pregnancy in response to progesterone by T lymphocytes. PIBF1 inhibits arachidonic acid release, controls NK activity, and modifies the cytokine balance exerting an anti-abortive effect. It contains a leucine zipper motif, a basic zipper sequence, a PEST sequence, a nuclear localization signal, an ER membrane retention signal and N-glycosylation and phosphorylation sites. PIBF1 is significantly higher in healthy pregnant women than in women at risk for premature pregnancy termination. Full-length PIBF1 is associated with the nucleus and functions as a transcription factor, whereas secretion of shorter forms which may act as cytokines is induced by activation of the cell.
Description: PIBF1 Antibody: PIBF1 is synthesized during pregnancy in response to progesterone by T lymphocytes. PIBF1 inhibits arachidonic acid release, controls NK activity, and modifies the cytokine balance exerting an anti-abortive effect. It contains a leucine zipper motif, a basic zipper sequence, a PEST sequence, a nuclear localization signal, an ER membrane retention signal and N-glycosylation and phosphorylation sites. PIBF1 is significantly higher in healthy pregnant women than in women at risk for premature pregnancy termination. Full-length PIBF1 is associated with the nucleus and functions as a transcription factor, whereas secretion of shorter forms which may act as cytokines is induced by activation of the cell.
Description: A polyclonal antibody raised in Rabbit that recognizes and binds to Human PIBF1 . This antibody is tested and proven to work in the following applications:
Description: A polyclonal antibody raised in Rabbit that recognizes and binds to Human PIBF1 / PIBF (C-Terminus). This antibody is tested and proven to work in the following applications:
Description: Description of target: PIBF1 is the mediator of progesterone that by acting on the phospholipase A2 enzyme interferes with arachidonic acid metabolism, induces a Th2 biased immune response, and by controlling NK activity exerts an anti-abortive effect.;Species reactivity: Human;Application: ELISA;Assay info: ;Sensitivity: < 0.116ng/mL
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) in Tissue homogenates and other biological fluids.
Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) ELISA Kit
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) in Tissue homogenates and other biological fluids.
Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) ELISA Kit
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) in Tissue homogenates and other biological fluids.
Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) ELISA Kit
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) in Tissue homogenates and other biological fluids.
Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) ELISA Kit
Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Progesterone Immunomodulatory Binding Factor 1 (PIBF1) in samples from Tissue homogenates and other biological fluids. with no significant corss-reactivity with analogues from other species.
ELISA kit for Human PIBF1 (Progesterone Immunomodulatory Binding Factor 1)
Description: A sandwich ELISA kit for detection of Progesterone Immunomodulatory Binding Factor 1 from Human in samples from blood, serum, plasma, cell culture fluid and other biological fluids.
PIBF1 sgRNA CRISPR/Cas9 All-in-One Lentivector set (Human)
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis. One version of pediatric acute myeloid leukemia is the result of a reciprocal translocation between chromosomes 11 and X, with the breakpoint associated with the genes encoding the mixed-lineage leukemia and septin 2 proteins. This gene encodes four transcript variants encoding three distinct isoforms. An additional transcript variant has been identified, but its biological validity has not been determined.
Description: This gene is a member of the septin family involved in cytokinesis and cell cycle control. This gene is a candidate for the ovarian tumor suppressor gene. Mutations in this gene cause hereditary neuralgic amyotrophy, also known as neuritis with brachial predilection. A chromosomal translocation involving this gene on chromosome 17 and the MLL gene on chromosome 11 results in acute myelomonocytic leukemia. Multiple alternatively spliced transcript variants encoding different isoforms have been described.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is highly expressed in brain and heart. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. One of the isoforms (known as ARTS) is distinct; it is localized to the mitochondria, and has a role in apoptosis and cancer.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis and the maintenance of cellular morphology. This gene encodes a protein that can form homo- and heterooligomeric filaments, and may contribute to the formation of neurofibrillary tangles in Alzheimer's disease. Alternatively spliced transcript variants have been found but the full-length nature of these variants has not been determined. [provided by RefSeq, Dec 2012]
Description: This gene encodes a guanine-nucleotide binding protein and member of the septin family of cytoskeletal GTPases. Septins play important roles in cytokinesis, exocytosis, embryonic development, and membrane dynamics. Multiple transcript variants encoding different isoforms have been found for this gene.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: This is Competitive Enzyme-linked immunosorbent assay for Antibody Detection.detection of Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) in serum, plasma and other biological fluids.
Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) ELISA Kit
Description: This is Competitive Enzyme-linked immunosorbent assay for Antibody Detection.detection of Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) in serum, plasma and other biological fluids.
Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) ELISA Kit
Description: This is Competitive Enzyme-linked immunosorbent assay for Antibody Detection.detection of Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) in serum, plasma and other biological fluids.
Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) ELISA Kit
Description: This is Competitive Enzyme-linked immunosorbent assay for Antibody Detection.detection of Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) in serum, plasma and other biological fluids.
Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) ELISA Kit
Description: Enzyme-linked immunosorbent assay based on the Competitive Inhibition method for detection of Human Anti-Anti-Sperm Antibody Antibody (Anti-AsAb) in samples from serum, plasma and other biological fluids with no significant corss-reactivity with analogues from other species.
ELISA kit for Human Anti-AsAb (Anti-Anti-Sperm Antibody Antibody)
Description: A competitive Inhibition ELISA kit for detection of Anti-Anti-Sperm Antibody Antibody from Human in samples from blood, serum, plasma, cell culture fluid and other biological fluids.
Mapping PolyclonalAntibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines.
Rational immunogen design goals to focus antibody responses to weak websites on main antigens. Given the dimensions of those antigens, there may be, nonetheless, potential for eliciting undesirable, off-target responses. Right here, we use our electron microscopy polyclonal epitope mapping method to explain the antibody specificities elicited by immunization of non-human primates with soluble HIV envelope trimers and subsequent repeated viral problem. An elevated variety of epitopes acknowledged and the method angle by which these antibodies bind represent a trademark of the humoral response in most protected animals.
We additionally present that fusion peptide-specific antibodies are probably liable for some neutralization breadth. Furthermore, cryoelectron microscopy (cryo-EM) evaluation of a totally protected animal reveals a excessive diploma of clonality inside a subset of putatively neutralizing antibodies, enabling an in depth molecular description of the antibody paratope. Our outcomes present necessary insights into the immune response towards a vaccine candidate that entered into scientific trials in 2019.
Manufacturing and Purification of polyclonalantibody towards attenuated and wild kind leishmania infantum in canine.
Antibodies are nonetheless extensively utilized in a number of packages together with early analysis, imaging, Focusing on drug supply system, Affinity chromatography, flowcytometry technic, prognosis and remedy. Purification of antibody is a normal method for detection of an infection agent in several species.
The reservoir hosts for leishmania infantum are Canine and so they have lively position within the transmission of leishmania to people by the chew of a sand fly belonging to genus Phlebotomus and Lutzomiya. Consequently, elimination of canine in endemic areas and vaccination of canine contributes to discount of the human and canine VL circumstances.
Serological antibody assessments similar to IFAT (Oblique Fluorescent Antbody Check), DFAT (Direct Fluorescent Antbody Check), ELISA (Enzyme-Linked Immunosorbent Assay), PCR (Polymerase chain Response Assay) have been extensively used to analyze canine an infection with L. infantum.
On this examine we produced and purified polyclonal antibody towards attenuated and wild kind leishmania infantum in canine. Anti-leishmania in canine serums precipitated with ammonium sulphate. The IgG recovered from ammonium sulphate precipitation was topic to ion alternate chromatography (IEC) and the purity of IgG was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) below lowered situation.
The purity of proteins have been above 95% after which purified IgG was conjugated with FITC. We decided optimum titer of canine IgG by commentary parasites below fluorescent microscope. The optimum dilution of ready FITC conjugated canine IgG was 1: 400. This polyclonal antibody can be utilized for different functions in analysis, prognosis and clinic.
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis. One version of pediatric acute myeloid leukemia is the result of a reciprocal translocation between chromosomes 11 and X, with the breakpoint associated with the genes encoding the mixed-lineage leukemia and septin 2 proteins. This gene encodes four transcript variants encoding three distinct isoforms. An additional transcript variant has been identified, but its biological validity has not been determined.
Description: This gene is a member of the septin family involved in cytokinesis and cell cycle control. This gene is a candidate for the ovarian tumor suppressor gene. Mutations in this gene cause hereditary neuralgic amyotrophy, also known as neuritis with brachial predilection. A chromosomal translocation involving this gene on chromosome 17 and the MLL gene on chromosome 11 results in acute myelomonocytic leukemia. Multiple alternatively spliced transcript variants encoding different isoforms have been described.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is highly expressed in brain and heart. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. One of the isoforms (known as ARTS) is distinct; it is localized to the mitochondria, and has a role in apoptosis and cancer.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis and the maintenance of cellular morphology. This gene encodes a protein that can form homo- and heterooligomeric filaments, and may contribute to the formation of neurofibrillary tangles in Alzheimer's disease. Alternatively spliced transcript variants have been found but the full-length nature of these variants has not been determined. [provided by RefSeq, Dec 2012]
Description: This gene encodes a guanine-nucleotide binding protein and member of the septin family of cytoskeletal GTPases. Septins play important roles in cytokinesis, exocytosis, embryonic development, and membrane dynamics. Multiple transcript variants encoding different isoforms have been found for this gene.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: The CLCN5 gene encodes the chloride channel Cl-/H+ exchanger ClC-5. This gene encodes a member of the ClC family of chloride ion channels and ion transporters. The encoded protein is primarily localized to endosomal membranes and may function to facilitate albumin uptake by the renal proximal tubule. Mutations in this gene have been found in Dent disease and renal tubular disorders complicated by nephrolithiasis. Alternatively spliced transcript variants have been found for this gene.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is unconjugated.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 390.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 488.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 565.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 633.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 655.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 680.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 700.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Alkaline Phosphatase.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to APC .
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to APC/Cy7.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Biotin.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 350.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 405.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 488.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 633.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to FITC.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to HRP.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to PE/ATTO 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to PerCP.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to RPE .
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Streptavidin.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is unconjugated.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This antibody is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. In general the ratio of Kappa to Lambda is 3:1. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: Antibodies are produced by B lymphocytes, each expressing only one class of light chain. Once set, light chain class remains fixed for the life of the B lymphocyte. In a healthy individual, the total kappa to lambda ratio is roughly 3:1 in serum (measuring intact whole antibodies) or 1:1.5 if measuring free light chains, with a highly divergent ratio indicative of neoplasm.
Individual B-cells in lymphoid tissue possess either kappa or lambda light chains, but never both together. Specific rearrangement of lambda light chain of immunoglobulins can lead to loss of some protein coding genes, which does not seem to be functionally relevant (while functionally relevant miR-650 can be overexpressed). Using immunohistochemistry, it is possible to determine the relative abundance of B-cells expressing kappa and lambda light chains. If the lymph node or similar tissue is reactive, or otherwise benign, it should possess a mixture of kappa positive and lambda positive cells. If, however, one type of light chain is significantly more common than the other, the cells are likely all derived from a small clonal population, which may indicate a malignant condition, such as B-cell lymphoma. [Wiki]
Description: Antibodies are produced by B lymphocytes, each expressing only one class of light chain. Once set, light chain class remains fixed for the life of the B lymphocyte. In a healthy individual, the total kappa to lambda ratio is roughly 3:1 in serum (measuring intact whole antibodies) or 1:1.5 if measuring free light chains, with a highly divergent ratio indicative of neoplasm.
Individual B-cells in lymphoid tissue possess either kappa or lambda light chains, but never both together. Specific rearrangement of lambda light chain of immunoglobulins can lead to loss of some protein coding genes, which does not seem to be functionally relevant (while functionally relevant miR-650 can be overexpressed). Using immunohistochemistry, it is possible to determine the relative abundance of B-cells expressing kappa and lambda light chains. If the lymph node or similar tissue is reactive, or otherwise benign, it should possess a mixture of kappa positive and lambda positive cells. If, however, one type of light chain is significantly more common than the other, the cells are likely all derived from a small clonal population, which may indicate a malignant condition, such as B-cell lymphoma. [Wiki]
Description: Antibodies are produced by B lymphocytes, each expressing only one class of light chain. Once set, light chain class remains fixed for the life of the B lymphocyte. In a healthy individual, the total kappa to lambda ratio is roughly 3:1 in serum (measuring intact whole antibodies) or 1:1.5 if measuring free light chains, with a highly divergent ratio indicative of neoplasm.
Individual B-cells in lymphoid tissue possess either kappa or lambda light chains, but never both together. Specific rearrangement of lambda light chain of immunoglobulins can lead to loss of some protein coding genes, which does not seem to be functionally relevant (while functionally relevant miR-650 can be overexpressed). Using immunohistochemistry, it is possible to determine the relative abundance of B-cells expressing kappa and lambda light chains. If the lymph node or similar tissue is reactive, or otherwise benign, it should possess a mixture of kappa positive and lambda positive cells. If, however, one type of light chain is significantly more common than the other, the cells are likely all derived from a small clonal population, which may indicate a malignant condition, such as B-cell lymphoma. [Wiki]
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This mAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with kappa light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.